Error bounds for Gauss-Chebyshev quadrature
نویسندگان
چکیده
منابع مشابه
Error Bounds for Gauss-kronrod Quadrature Formulae
The Gauss-Kronrod quadrature formula Qi//+X is used for a practical estimate of the error R^j of an approximate integration using the Gaussian quadrature formula Q% . Studying an often-used theoretical quality measure, for ߣ* , we prove best presently known bounds for the error constants cs(RTMx)= sup \RlK+x[f]\ ll/(l»lloo<l in the case s = "Sn + 2 + tc , k = L^J LfJ • A comparison with the Ga...
متن کاملError bounds for Gauss-Tur'an quadrature formulae of analytic functions
We study the kernels of the remainder term Rn,s(f) of GaussTurán quadrature formulas ∫ 1 −1 f(t)w(t) dt = n ∑
متن کاملOn computing rational Gauss-Chebyshev quadrature formulas
We provide an algorithm to compute the nodes and weights for Gauss-Chebyshev quadrature formulas integrating exactly in spaces of rational functions with arbitrary real poles outside [−1, 1]. Contrary to existing rational quadrature formulas, the computational effort is very low, even for extremely high degrees, and under certain conditions on the poles it can be shown that the complexity is of...
متن کاملAn Error Expansion for Gauss–Turán Quadrature with Chebyshev Weight Function
Our aim in this paper is to obtain an expansion for the error in the Gauss-Turán quadrature formula for approximating ∫ 1 −1 w(t)f(t) dt in the case when the function f is analytic in some region of the complex plane containing the interval [−1, 1] in its interior, and the remainder term is presented in the form of a contour integral over the confocal ellipses. In the case w(t) = 1/ √ 1 − t2 we...
متن کاملGauss-chebyshev Quadrature Formulae for Strongly Singular Integrals
This paper presents some explicit results concerning an extension of the mechanical quadrature technique, namely, the Gauss-Jacobi numerical integration scheme, to the class of integrals whose kernels exhibit second order of singularity (i.e., one degree more singular than Cauchy). In order to ascribe numerical values to these integrals they must be understood in Hadamard's finite-part sense. T...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Mathematics of Computation
سال: 1968
ISSN: 0025-5718
DOI: 10.1090/s0025-5718-1968-0228179-5